Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Perisynaptic astroglia provide critical molecular and structural support to regulate synaptic transmission and plasticity in the nanodomain of the axon-spine interface. Three-dimensional reconstruction from serial section electron microscopy (3DEM) was used to investigate relationships between perisynaptic astroglia and dendritic spine synapses undergoing plasticity in the hippocampus of awake adult male rats. Delta-burst stimulation (DBS) of the medial perforant pathway induced long-term potentiation (LTP) in the middle molecular layer and concurrent long-term depression (cLTD) in the outer molecular layer of the dentate gyrus. The contralateral hippocampus received baseline stimulation as a within-animal control. Brains were obtained 30 minutes or 2 hours after DBS onset. An automated 3DEM pipeline was developed to enable unbiased quantification of astroglial coverage at the perimeter of the axon-spine interface. Under all conditions, >85% of synapses had perisynaptic astroglia processes within 120 nm of some portion of the perimeter. LTP broadened the distribution of spine sizes while reducing the presence and proximity of perisynaptic astroglia near the axon-spine interface of large spines. In contrast, cLTD transiently reduced the length of the axon-spine interface perimeter without substantially altering astroglial apposition. The postsynaptic density was discovered to be displaced from the center of the axon-spine interface, with this offset increasing during LTP and decreasing during cLTD. Astroglial access to the postsynaptic density was diminished during LTP and enhanced during cLTD, in parallel with changes in spine size. Thus, access of perisynaptic astroglia to synapses is dynamically modulated during LTP and cLTD alongside synaptic remodeling. Significance StatementPerisynaptic astroglia provide critical molecular and structural regulation of synaptic plasticity underlying learning and memory. The hippocampal dentate gyrus, a brain region crucial for learning and memory, was found to have perisynaptic astroglia at the axon-spine interface of >85% of excitatory synapses measured. Long-term potentiation triggered the retraction of perisynaptic astroglia processes selectively from large synapses. This retraction decreased access of perisynaptic astroglia to the postsynaptic density, which was discovered to be located off-center in the axon-spine interface. Concurrent long-term depression temporarily (< 2 h) decreased spine perimeter and thus increased access of synapses to perisynaptic astroglia. These findings provide new insights into how the structural dynamics of spines and synapses shape access to perisynaptic astroglia.more » « lessFree, publicly-accessible full text available May 14, 2026
-
Abstract As the serial section community transitions to volume electron microscopy, tools are needed to balance rapid segmentation efforts with documenting the fine detail of structures that support cell function. New annotation applications should be accessible to users and meet the needs of the neuroscience and connectomics communities while also being useful across other disciplines. Issues not currently addressed by a single, modern annotation application include: 1) built-in curation systems with utilities for expert intervention to provide quality assurance, 2) integrated alignment features that allow for image registration on-the-fly as image flaws are discovered during annotation, 3) simplicity for non-specialists within and beyond the neuroscience community, 5) a system to store experimental meta-data with annotation data in a way that researchers remain masked regarding condition to avoid potential biases, 6) local management of large datasets, 7) fully open-source codebase allowing development of new tools, and more. Here, we present PyReconstruct, a modern successor to the Reconstruct annotation tool. PyReconstruct operates in a field-agnostic manner, runs on all major operating systems, breaks through legacy RAM limitations, features an intuitive and collaborative curation system, and employs a flexible and dynamic approach to image registration. It can be used to analyze, display, and publish experimental or connectomics data. PyReconstruct is suited for generating ground truth to implement in automated segmentation, outcomes of which can be returned to PyReconstruct for proofreading and quality control. Significance statementIn neuroscience, the emerging field of connectomics has produced annotation tools for reconstruction that prioritize circuit connectivity across microns to centimeters and farther. Determining the strength of synapses forming the connections is crucial to understand function and requires quantification of their nanoscale dimensions and subcellular composition. PyReconstruct, successor to the early annotation tool Reconstruct, meets these requirements for synapses and other structures well beyond neuroscience. PyReconstruct lifts many restrictions of legacy Reconstruct and offers a user-friendly interface, integrated curation, dynamic alignment, nanoscale quantification, 3D visualization, and more. Extensive compatibility with third-party software provides access to the expanding tools from the connectomics and imaging communities.more » « lessFree, publicly-accessible full text available April 22, 2026
-
Abstract Functional and structural elements of synaptic plasticity are tightly coupled, as has been extensively shown for dendritic spines. Here, we interrogated structural features of presynaptic terminals in 3DEM reconstructions from CA1 hippocampal axons that had undergone control stimulation or theta-burst stimulation (TBS) to produce long-term potentiation (LTP). We reveal that after LTP induction, the synaptic vesicle (SV) cluster is less dense, and SVs are more dispersed. The distances between neighboring SVs are greater in less dense terminals and have more SV-associated volume. We characterized the changes to the SV cluster by measuring distances between neighboring SVs, distances to the active zone, and the dispersion of the SV cluster. Furthermore, we compared the distribution of SVs with randomized ones and provided evidence that SVs gained mobility after LTP induction. With a computational model, we can predict the increment of the diffusion coefficient of the SVs in the cluster. Moreover, using a machine learning approach, we identify presynaptic terminals that were potentiated after LTP induction. Lastly, we show that the local SV density is a volume-independent property under strong regulation. Altogether, these results provide evidence that the SV cluster is undergoing a transition during LTP.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Synapses form trillions of connections in the brain. Long-term potentiation (LTP) and long-term depression (LTD) are cellular mechanisms vital for learning that modify the strength and structure of synapses. Three-dimensional reconstruction from serial section electron microscopy reveals three distinct pre- to post-synaptic arrangements: strong active zones (AZs) with tightly docked vesicles, weak AZs with loose or non-docked vesicles, and nascent zones (NZs) with a postsynaptic density but no presynaptic vesicles. Importantly, LTP can be temporarily saturated preventing further increases in synaptic strength. At the onset of LTP, vesicles are recruited to NZs, converting them to AZs. During recovery of LTP from saturation (1–4 h), new NZs form, especially on spines where AZs are most enlarged by LTP. Sentinel spines contain smooth endoplasmic reticulum (SER), have the largest synapses and form clusters with smaller spines lacking SER after LTP recovers. We propose a model whereby NZ plasticity provides synapse-specific AZ expansion during LTP and loss of weak AZs that drive synapse shrinkage during LTD. Spine clusters become functionally engaged during LTP or disassembled during LTD. Saturation of LTP or LTD probably acts to protect recently formed memories from ongoing plasticity and may account for the advantage of spaced over massed learning. This article is part of a discussion meeting issue ‘Long-term potentiation: 50 years on’.more » « less
-
Producing dense 3D reconstructions from biological imaging data is a challenging instance segmentation task that requires significant ground-truth training data for effective and accurate deep learning-based models. Generating training data requires intense human effort to annotate each instance of an object across serial section images. Our focus is on the especially complicated brain neuropil, comprising an extensive interdigitation of dendritic, axonal, and glial processes visualized through serial section electron microscopy. We developed a novel deep learning-based method to generate dense 3D segmentations rapidly from sparse 2D annotations of a few objects on single sections. Models trained on the rapidly generated segmentations achieved similar accuracy as those trained on expert dense ground-truth annotations. Human time to generate annotations was reduced by three orders of magnitude and could be produced by non-expert annotators. This capability will democratize generation of training data for large image volumes needed to achieve brain circuits and measures of circuit strengths.more » « less
-
Abstract Variation in the strength of synapses can be quantified by measuring the anatomical properties of synapses. Quantifying precision of synaptic plasticity is fundamental to understanding information storage and retrieval in neural circuits. Synapses from the same axon onto the same dendrite have a common history of coactivation, making them ideal candidates for determining the precision of synaptic plasticity based on the similarity of their physical dimensions. Here, the precision and amount of information stored in synapse dimensions were quantified with Shannon information theory, expanding prior analysis that used signal detection theory (Bartol et al., 2015). The two methods were compared using dendritic spine head volumes in the middle of the stratum radiatum of hippocampal area CA1 as well-defined measures of synaptic strength. Information theory delineated the number of distinguishable synaptic strengths based on nonoverlapping bins of dendritic spine head volumes. Shannon entropy was applied to measure synaptic information storage capacity (SISC) and resulted in a lower bound of 4.1 bits and upper bound of 4.59 bits of information based on 24 distinguishable sizes. We further compared the distribution of distinguishable sizes and a uniform distribution using Kullback-Leibler divergence and discovered that there was a nearly uniform distribution of spine head volumes across the sizes, suggesting optimal use of the distinguishable values. Thus, SISC provides a new analytical measure that can be generalized to probe synaptic strengths and capacity for plasticity in different brain regions of different species and among animals raised in different conditions or during learning. How brain diseases and disorders affect the precision of synaptic plasticity can also be probed.more » « less
-
Morphology and function of the dorsolateral prefrontal cortex (dlPFC), and corresponding working memory performance, are affected early in the aging process, but nearly half of aged individuals are spared of working memory deficits. Translationally relevant model systems are critical for determining the neurobiological drivers of this variability. The common marmoset (Callithrix jacchus) is advantageous as a model for these investigations because, as a non-human primate, marmosets have a clearly defined dlPFC that enables measurement of prefrontal-dependent cognitive functions, and their short (∼10 year) lifespan facilitates longitudinal studies of aging. Previously, we characterized working memory capacity in a cohort of marmosets that collectively covered the lifespan, and found age-related working memory impairment. We also found a remarkable degree of heterogeneity in performance, similar to that found in humans. Here, we tested the hypothesis that changes to synaptic ultrastructure that affect synaptic efficacy stratify marmosets that age with cognitive impairment from those that age without cognitive impairment. We utilized electron microscopy to visualize synapses in the marmoset dlPFC and measured the sizes of boutons, presynaptic mitochondria, and synapses. We found that coordinated scaling of the sizes of synapses and mitochondria with their associated boutons is essential for intact working memory performance in aged marmosets. Further, lack of synaptic scaling, due to a remarkable failure of synaptic mitochondria to scale with presynaptic boutons, selectively underlies age-related working memory impairment. We posit that this decoupling results in mismatched energy supply and demand, leading to impaired synaptic transmission. We also found that aged marmosets have fewer synapses in dlPFC than young, though the severity of synapse loss did not predict whether aging occurred with or without cognitive impairment. This work identifies a novel mechanism of synapse dysfunction that stratifies marmosets that age with cognitive impairment from those that age without cognitive impairment. The process by which synaptic scaling is regulated is yet unknown and warrants future investigation.more » « less
-
Large scale collaborative science requires tools to facilitate sharing of data, protocols, analysis tools, as well as data products and their provenance. We describe here two recent science gateways successfully deployed to accomplish collaborative research. The first is the Synergistic Discovery and Design Environment (SD2E), which was a web-based analysis platform for collaborative analysis, data sharing, and application development. The second is the 3D Electron Microscopy (3DEM) portal, which is a web-based research platform focused on developing and disseminating new technologies for enhanced resolution 3DEM. Both gateways were hosted and connected to high-performance computing resources at the Texas Advanced Computing Center.more » « less
An official website of the United States government
